Abstract;We reviewed four neonates with common pulmonary vein atresia (CPVA) encountered at our institution since 1995. In all patients, chest radiography at birth showed severe pulmonary congestion, air leak and pleural effusion despite normal cardiac silhouette. Arterial blood gas analysis on admission demonstrated marked acidosis with hypoxemia and hypercapnea unresponsive to 100% oxygen and mechanical ventilation. In three patients, CPVA was diagonosed by echocardiography visualizing a small common pulmonary venous chamber behind the left atrium without major drainage veins. In the remaining one patient, a diagnosis of CPVA was established by autopsy. Two patients underwent corrective surgical repair for CPVA. However, these infants could not survive due to intractable hypoxemia. One patient could not proceed to the surgical repair after the diagnosis because of extremely very low birth weight, hypoplastic lungs and trisomy 13 and the infant died of hypoxemia. All four patients died. Autopsy on three patients demonstrated the typical anatomy of CPVA. In all patients, vertical veins were proven and found to be atretic. Two of the patients had dilated pulmonary lymphatic channels on the overall lung surfaces, which microscopic examination confirmed as pulmonary lymphangiectasis. In conclusion, CPVA is fatal despite early diagnosis and surgical correction. The cause of death was intractable hypoxemia due to persistent pulmonary venous obstruction and pulmonary lymphangiectasis. _________________________________________________________________________________________________
Congenit Heart Dis. 2008 Nov-Dec;3(6):431-4. Atresia of the common pulmonary vein--a rare congenital anomaly.Vaideeswar P, Tullu MS, Sathe PA, Nanavati R. Department of Pathology, Cardiovascular & Thoracic Division, Seth G.S. Medical College, KEM Hospital, Parel, Mumbai, India. shreeprajai@yahoo.co.in AbstractOBJECTIVES: Early atresia of the common pulmonary vein (ACPV) leads to total anomalous pulmonary venous drainage, while late atresia or incomplete absorption leads to common pulmonary vein atresia and cor triatriatum sinister (both of which are rare). We report seven cases of atresia of the common pulmonary vein at autopsy. DESIGN: Retrospective case records studied. SETTING: Tertiary care teaching hospital affiliated to medical college in Mumbai, India. PATIENTS AND METHODS: The clinical and autopsy records of neonates and infants diagnosed with ACPV over a period of 11 years were reviewed. The demographic data, clinical features, and results of investigations were correlated with the cardiac findings at necropsy. RESULTS: Seven neonates and infants (five males and two females) had ACPV. Six babies presented at birth and expired within 48 hours. They had a homogeneous group of symptoms of cyanosis since birth with respiratory distress and/or features of congestive cardiac failure. One had perimembranous ventricular septal defect with bicuspid pulmonary valve and atresia of aortic valve. Two had dysmorphic facial features suggestive of Down's syndrome. Isolated ACPV was seen in only two patients. Asplenia syndrome was seen in three patients. Marked dilatation of the pulmonary lymphatics was identified in three patients. CONCLUSIONS: Early atresia of the common pulmonary vein, an extremely rare abnormality, manifests in early infancy/neonatal period and needs urgent corrective surgery. It is associated with other congenital heart disorders and extracardiac manifestations as well. ____________________________________________________________________________________________________ This article provides an overall distribution frequencies of different types of drainage & incidence of pulmonary venous obstruction and hypertensive changes in pulmonary arteries.
Pediatr Pathol. 1994 Jul-Aug;14(4):665-78. Total anomalous pulmonary venous drainage associated with fatal outcome in infancy and early childhood: an autopsy study of 52 cases.James CL, Keeling JW, Smith NM, Byard RW. Department of Tissue Pathology, Institute of Medical and Veterinary Science, Adelaide, Australia. AbstractClinicopathological details of 52 cases of total anomalous pulmonary venous drainage (TAPVD) taken from pediatric autopsy files from hospitals in Adelaide (Australia) Oxford and Edinburgh (United Kingdom) between 1957 and 1990 are presented. The patients ranged in age from a stillborn girl to a 15-month-old boy, with 42 cases (81%) dying in the first 3 months of life. While many patients had signs of a congenital cardiovascular anomaly prior to death, including tachypnea, tachycardia, central cyanosis, cardiac failure, heart murmurs, and difficulty in feeding, it was noteworthy that eight patients (16%) presented as sudden and unexpected death in the absence of significant antemortem symptoms and signs. Anomalous pulmonary venous drainage was also unsuspected prior to death in a total of 26 cases (53%) of those where relevant history was available (49 cases). Twelve infants (23%) underwent surgical correction, none of whom survived more than several weeks. TAPVD was isolated in 30 cases (58%) and was associated with other cardiac or congenital anomalies in 22 patients (42%). Just under half of nonisolated cases comprised the asplenia-heterotaxy syndrome. The points of drainage of the anomalous pulmonary veins were to the infradiaphragmatic veins (n = 21, 40%), left innominate vein (n = 13, 25%), coronary sinus (n = 7, 13%), right superior vena cava (n = 4, 8%), inferior vena cava above the diaphragm (n = 2, 4%), right innominate vein (n = 2, 4%), mixed left innominate vein and coronary sinus (n = 1, 2%), azygos vein (n = 1, 2%), and mixed right superior vena cava and left hemiazygos vein (n = 1, 2%). Twenty-three of 47 cases (49%) that were specifically examined revealed obstruction of the pulmonary veins or pulmonary hypertensive vascular changes on histology. These results emphasize that TAPVD needs to be excluded at autopsy as a causal factor in cases of sudden infant death even in the absence of antemortem symptoms and signs. Clues at autopsy include abnormal mobility of the heart, visceral situs inversus, and polyasplenia. The diversity of pulmonary-systemic venous anastomoses necessitates careful in situ dissection above and below the diaphragm and consideration of postmortem angiography. ______________________________________________________________________________________________________________ Pediatr Cardiol. 2001 May-Jun;22(3):255-7. Successful surgical repair of common pulmonary vein atresia in a newborn.Suzuki T, Sato M, Murai T, Fukuda T. Division of Cardiovascular Surgery, Tokyo Metropolitan Children's Hospital, 1-3-1 Umezono, Kiyose-shi, Tokyo 204-8567, Japan. AbstractA 7-hour-old boy underwent an emergency operation with an anticipated diagnosis of total anomalous pulmonary venous connection. The precise diagnosis of common pulmonary vein atresia (CPVA) was made during the operation. A side-to-side anastomosis between the common pulmonary venous chamber and the left atrium was performed. All procedures were successfully carried out on the beating heart under the cardiopulmonary bypass. A tentative diagnosis of CPVA should always be borne in minds in neonates with clinical conditions such as deep cyanosis unresponsive to the oxygen therapy, stubborn acidosis, severe pulmonary venous congestion, and rapid deterioration. The corrective repair of CPVA with the heart beating appears to be the procedure of choice in the setting of seriously damaged myocardium of the immature heart. To the best of our knowledge, this is the youngest survivor of the corrective surgery for CPVA and operation at time of diagnosis is the important principle. ____________________________________________________________________________________________________________________________ Annals of Pediatric Cardiology 2009;2:153-5.
| | Supracardiac anomalous pulmonary venous connection with unilateral pulmonary venous atresia: Diagnosis and management | | Vishal P Changela, Suresh Pujar, Sunita Maheshwari Department of Pediatric Cardiology, Narayan Hrudayalaya Institute of Cardiac Sciences, Bangalore, India
| Introduction | | |
Anomalous pulmonary venous connection and drainage are known congenital cardiac anomalies that need early surgical correction. The presence of pulmonary venous stenosis or atresia in this setting may change management options. Thus, their coexistent presence should be specifically looked for during echocardiography.
This case emphasizes the importance of thorough evaluation of individual pulmonary veins before cardiac surgery. Multislice cardiac computed tomography, when indicated, may play a vital role in such an evaluation.
Case Report | | |
A 6-day-old, 2.8 kg full-term neonate with a history of fast breathing and feeding difficulty was referred to our hospital for surgical correction of supracardiac total anomalous pulmonary venous connection.
On examination, the baby had severe respiratory distress and central cyanosis with saturation of 72% by a pulse oxymeter. Cardiovascular examination demonstrated a normal first heart sound, wide and fixed split second heart sound and a 2/6 ejection systolic murmur at the pulmonary area. Mechanical ventilation was started along with inotropes. Chest X-ray film showed haziness along with reticulogranular pattern involving the entire right lung. The left lung field was normal [Figure 1]. In retrospect, this pattern was suggestive of differential pulmonary venous congestion.
Transthoracic echocardiography showed left-sided anomalous supracardiac pulmonary venous connection. Left-sided pulmonary veins formed a common chamber behind the left atrium. From there, a right vertical vein ascended and joined the right innominate vein - superior vena cava junction, with a gradient of 11 mmHg a this junction. In addition, a large ostium secundum type of atrial septal defect (shunting right to left) and a small patent ductus arteriosus (shunting bidirectional) were observed. Right- sided pulmonary veins were not clearly seen.
Because the right veins were not clearly defined on transthoracic echocardiography, 64 multislice cardiac computed tomography was performed, which revealed atretic right-sided pulmonary veins with anomalous left-sided pulmonary venous connections and drainage, as described above [Figure 2]. Severe interstitial edema of the right lung was observed.
The case was discussed at our combined Pediatric Cardiology-Cardiac Surgical meeting. Surgical rerouting of unilateral pulmonary veins without addressing right lung issues may lead to persistence of severe pulmonary arterial hypertension (PAH). One option was to transplant the right lung and to reroute the pulmonary veins on the other side. Non-availability of an expert neonatal lung transplantation facility and "donor neonatal lung" along with very high procedural morbidity and mortality precluded such a repair in the neonatal period. Thus, this baby was deemed to be a poor candidate for cardiac surgery.
Discussion | | |
Although rare, total anomalous pulmonary venous connection is one of the routine congenital cardiac anomalies seen at tertiary care pediatric cardiac facilities. In most cases, all four pulmonary veins drain into a common chamber that has a variable drainage site. Pulmonary venous atresia is extremely rare with anomalous pulmonary venous connections but can affect management decisions. Etiology of pulmonary venous atresia is believed to be congenital and is related to a somewhat more common focal pulmonary venous stenosis. [1]Improper incorporation of the common pulmonary vein into the left atrium is the embryological basis.
In a study by Makoto et al., nine of 48 patients of anomalous pulmonary venous connection had dysmorphic pulmonary veins. These included excessive tributaries, vertical vein atresia, hypoplastic confluence and focal pulmonary vein stenosis. [1] None had pulmonary venous atresia involving the entire lung.
Older children with isolated unilateral pulmonary venous atresia present with hemoptysis, recurrent pulmonary infections and small lungs with reticulogranular pattern on a chest X-ray film. [2-5] Venous drainage of the involved lung occurs into the azygos vein via the bronchial venous system. [3] Treatment of this condition is lobectomy or pneumonectomy. [2],[3],[4],[5]Isolated pulmonary venous atresia is rare and its association with other congenital heart diseases is even rarer. [2]
Evaluation of individual pulmonary veins is mandatory in a case with anomalous pulmonary venous connections. Takayuki et al. showed that the prospective detection rates of pulmonary venous abnormalities with echocardiography were 38%. [6] Doubtful pulmonary venous anatomy on echocardiography can be further evaluated by cardiac computed tomography scan, which is an excellent diagnostic tool to define the pulmonary venous tree.[7],[8]
In a similar single reported case of infradiaphragmatic pulmonary venous connection and unilateral pulmonary venous atresia, the authors did not operate on their patient and mentioned unfavorable prognosis of such an entity. [9]
In summary, early presentation, discrepancy between clinical condition and degree of pulmonary venous obstruction along with differential pulmonary venous congestion on chest X-ray film are important bedside clues to look for pulmonary venous hypoplasia/atresia, such as diagnosed in our case above. Unilateral small pulmonary artery (if present) is another clue for pulmonary venous hypoplasia/atresia, which is in contrast to dilated pulmonary arteries of classic total anomalous pulmonary venous connection. [10]
Pre-surgical evaluation of individual pulmonary veins in congenital cardiac cases, especially those with anomalous pulmonary venous connections, prevents errors in management. Multislice cardiac computed tomography scan plays a vital role in accurate diagnosis of this rare entity.
References | | |
1. | Ando M, Takahashi Y, Kikuchi T. Total anomalous pulmonary venous connection with dysmorphic pulmonary vein: A risk for postoperative pulmonary venous obstruction. Interact Cardiovasc Thorac Surg 2004;3:557-61. | 2. | Pourmoghadam KK, Moore JW, Khan M, Geary EM, Madan N, Wolfson BJ, et al. Congenital unilateral pulmonary venous atresia: Definitive diagnosis and treatment. Pediatr Cardiol 2003;1:73-9. | 3. | Cullen S, Deasy PF, Tempany E, Duff DF. Isolated pulmonary vein atresia. Br Heart J 1990;63:350-4. | 4. | Kingston HM, Patel RG, Watson GH. Unilateral absence or extreme hypoplasia of pulmonary veins. Br Heart J 1983;49:148-53. | 5. | Swischuk LE, L'Heureux P. Unilateral pulmonary vein atresia. AJR Am J Roentgenol 1980;135:667-2. | 6. | Masui T, Seelos KC, Kersting-Sommerhoff BA, Higgins CB. Abnormalities of the pulmonary veins: Evaluation with mr imaging and comparison with cardiac angiography and echocardiography. Radiology 1991;181:645-9. | 7. | Heyneman LE, Nolan RL, Harrison JK, McAdams HP. Congenital unilateral pulmonary vein atresia: Radiologic findings in three adult patients. AJR Am J Roentgenol 2001;177:681-5. | 8. | Daltro P, Fricke BL, Kuroki I, Domingues R, Donnelly LF. CT of congenital lung lesions in pediatric patients. AJR Am J Roentgenol 2004;5:1497-506. | 9. | Samαnek M, Tόma S, Benesovα D, Povύsilovα V, Prazskύ F, Cαpova E. Atresia of right pulmonary veins and anomalous left pulmonary venous drainage into portal circulation. Thorax 1974;29:446-50. | 10. | Beerman LB, Oh KS, Park SC, Freed MD, Sondheimer HM, Fricker FJ, et al. Unilateral pulmonary vein atresia: Clinical and radiographic spectrum. Pediatr Cardiol 1983;2:105- 12.
|
|
|